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One- and two-dimensional vibrational problems were solved to determine the 
states of H and D in the intramolecular hydrogen bond of malonic dialdehyde. 
Within the one-dimensional approach the model potential (barrier height 
51 kJ/mol)  satisfied with the IR and microwave spectroscopy data. For the 
two-dimensional problem an approach to evaluation of eigenvalues with high 
accuracy based on the Ritz method was developed. Within the two- 
dimensional approximation the barrier height was taken to be 57 kJ/mol.  An 

�9 introduction of  the second dimension was found to give rise to the vibrational 
non-adiabatic effects. 
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1. Introduction 

Quantum-mechanical tunnelling is known to play an important role in hydrogen 
atom or proton transfer encountered in many chemical and biological processes 
[1, 2]. In computing rate constants for chemical reactions tunnelling is most often 
introduced by using the Wigner type tunnel corrections [31, whereby only the 
probability of  tunnelling through the one-dimensional barrier is computed. The 
latter is given by the potential V(s) along the minimal reaction energy path. This 
approach was applied to studying hydrogen bonds (h.b.) in malonic dialdehyde 
(MDA) [4, 5, 6, 7] which is one of  the most convenient model compounds [8] to 
investigate intramolecular hydrogen bonds. 

From the theoretical viewpoint, Miller [9] and Marcus-Coltrin [10] corrections 
considering the influence of the transverse vibrational modes on the motion along 
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the reaction coordinate proved to be more accurate methods to treat the tunneling 
effect. In [9] and [10], two main approximations were used, namely first, the 
vibrational adiabaticity (the vibrational quantum number n of the mode u of 
reactants was assumed to remain unchanged along the reaction coordinate), and 
secondly, the quasi-classical approximation for calculating the tunnelling prob- 
abilities. 

It should be noted, however, that the former approximation proved good only 
when the motion along the reaction coordinate is much slower than the vibrational 
motion. Two main sources were stated [11] to give rise to the vibrational- 
nonadiabatic effects. They are (1) the variation of frequencies O f transverse modes 
along the reaction coordinate;(2) curvilinear effects, e.g. a sharp change of the 
reaction coordinate direction. 

As was demonstrated by Brickmann and Zimmermann, in numerical computations 
of H atom states in the model double-well h.b. potentials, the quasi-classical 
approximation can lead to high errors [12]. 

The approach developed to avoid these approximations is the system-bath 
decomposition of the reaction-path Hamiltonian [13]. The reaction coordinate 
is assumed to be coupled strongly to a few of the transverse vibrational modes, 
and more weakly to the remaining ones. Thus, the complete polyatomic molecular 
system can be divided into a "system" (the reaction coordinate and the strongly 
coupled modes) and a "bath" (the weakly coupled modes). The problem for a 
"system" can be solved accurately: while the effects of "bath" modes are con- 
sidered by approximate methods (e.g. perturbational or statistical). 

To solve the problems dealing with the intramolecular proton transfer within the 
framework of the approach discussed above we have composed a program for 
the numerical solution of the one-particle Schroedinger equation with the two- 
dimensional potential. 

This paper describes the technique for solving the two-dimensional one-particle 
Schroedinger equation and compares the two models of h.b. in MDA considering 
the motion of proton and deuteron in one- and two-dimensional adiabatic 
potentials. 

2. Numerical solution of the two-dimensional problem 

2.1. Initial equation 

Consider the Schroedinger equation for a two-dimensional motion of a particle 
of mass m with potential energy V. The function V represents a surface with a 
number of wells separated by barriers. All the wells are in a relative proximity 
to the origin of a certain coordinate system. With the increasing range from the 
origin the function V either grows or approximates to the limit value V~. Our 
interests are focused on those states of a particle for which its energy, from the 
viewpoint of the classical mechanics, is insufficient to overcome a barrier, so that 
a particle is localized inside a potential well. 



Two-dimensional model of intramolecular hydrogen bond 353 

In those particular cases when potential energy minima are arranged around the 
origin in a certain way, the symmetry of the problem invites the use of the polar 
coordinates. In the atomic units the Schroedinger equation takes the form: 

( d2 ld2 ~-mV(r, ~))U(r,~o)=mhU(r, ~) (1) dr 2 r2dq02 

with the boundary conditions: 

U(0, ~) = U(oo, (p) =0  (2a) 

U(r, ~)= U(r, ~ +27r). (2b) 

In  order to simplify the solution of this problem the minimum potential energy 
path (the reaction path) is suggested to be a circle with r = ro. Furthermore, let 
V(r, ~) satisfy the condition: 

d2V(ro, q~) 1 d2V(ro, q~) 
>) 

dr 2 r~ d~o 2 

If we denote r as x and ~p as y, the simplified Schroedinger equation will take 
the form: 

( d2 l d 2  ) 
dx 2 x2 dy: t-mV(x,y) U(x,y)=mhU(x,y). (3) 

Since the function U(x, y) rapidly vanishes in the classically inaccessible domain, 
one is in a position to neglect all its values for x not belonging to a certain 
interval. Bearing this in mind one can substitute the approximate boundary 
condition: 

U(xmin, y) = U(x . . . .  y) -- 0 (4) 

for the strict one (2a). 

Apparently, with xg set equal to the unity Eq. (3) will equally fit the particular 
case of a particle in a double-well potential. Therefore the boundary condition 
(2b) is reduced to: 

U(x, Ymin) = U(x,  Ymax) = 0 .  ( 5 )  

2.2. The algorithm of solving model equation (3) 

So, we have to solve Eq. (3) either with boundary conditions (4) and (2b) or 
with (4) and (5). Let us apply the Ritz method, and expand U as: 

N N 
U(x, y) = ~ ~ UuXi(x ) Yj(y) 

i=l j~l 

Y are always trigonometric functions and X, depending on the boundary condi- 
tions, are either trigonometric functions or the eigenfunctions of harmonic oscil- 
lators. The bases are assumed to be orthonormal. The coefficients U~ s can be 
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determined by solving the following eigenvalue problem: 

Z AoklUkl = A U 0 
kl 

(6) 

where the elements of  the matrix A are: 

~x"max f Yraax Aokt = Xi(x)  Yj(y)HXk(X) Yt(Y) dx dy. 
rain ~ Ymin 

Here 

(7) 

d 2 d 2 
H =  dx 2 x2dy-------2~5 V(x,y) .  (8) 

Since we must determine only a few of the lowest eigenvectors and corresponding 
eigenvalues of  the matrix A, we use the modified Davidson method [14], whereby 
we can avoid explicit calculation of all matrix elements. 

Suppose we are to calculate K of the lowest eigenvalues and eigenvectors of  the 
matrix A. The vectors Ui(i = 1 , . . . ,  K)  are determined by iterations. At every 
step the vectors U are expanded with respect to the vectors of  the intermediate 
basis e;: 

L 
u '  = y sj, e j. 

j=l 

In the coordinate representation e i is expanded as follows: 

e i (x ,y )=Y,  #ktXk(x) Yt(t) Y, ' e k l  = 1.  
k,l i 

Initialization of the process includes the formation of the vectors e ~ by means 
of diagonalization of the matrix A 1 which is a restriction of A onto the smaller 
basis consisting of Mx of the function X ( x )  and M r of  Y(y) .  

Analysis of  the nature of  convergence within the Davidson's  method along with 
the numerical computations prompted us to use for Ajj the matrix A ~ constructed 
in accordance with the following rules: 

0 _ _  Aijkt-- Aqkl if/, k <- M.  and j, l <- My 
0 - -  Aijkl -- Aijkl 6ik 8jl for i > Mx o r j  > My. 

The choice of  the numbers Mx and My was determined by the fact that their 
increase ensues on speeding up the convergence. On the other hand, the matrix 
A ~ containing a nondiagonal block of the order Mx" My must be diagonalized 
once that requires M 3 �9 M 3 of operations. Besides, to multiply a vector by the 
matrix ( A ~  -~ we need M E. M 2 operations more in each iteration. The 
modification of the method which we used here enables us to lower significantly 
a number  of  iterations compared to the Davidson's  method. 
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While solving the model problems with Nx = 20 and Ny = 70 we succeeded by 
the choice of Mx = 8 and My = 25 in the greater than 10 times decrease of the 
error of determination of an eigenvalue. 

The multiplication of a vector by the matrix A was performed using the Gaussian 
quadratures for polynomial bases and the trapezoidal rules for trigonometric 
ones. The maximum accuracy was observed when the number of gridpoints of 
quadrature is roughly equal to the number of basis functions. Taking into account 
that in the coordinate representation the differential term of the operator H is 
rather simple and the potential term is diagonal the left multiple of a vector by 
the matrix A can be calculated by only 2(N 2 �9 Ny + Nx- N2y) of multiplications 
and additions. 

Consider an accuracy of eigenvalues obtained by this method. The arithmetic 
problem can be solved with the highest accuracy, so the crux is actually the 
convergence of the expansion of the function to be found in the terms of the 
chosen basis. In the basis of the weighted algebraic polynomials or trigonometric 
functions the convergence is determined by the smoothness of the expanded 
function. We will treat the convergence for the following exemplifying problem: 

- u ~ + p ( x )  U=,~u 

U(A)  = U(B)  = O. 

Solutions of this problem obviously have limited derivatives of K + 2 order, where 
K is the highest order of limited derivative of the function p(x) .  An expansion 
of p over the properly chosen basis converges in such a way that the residual 
term has N -(K+2~ order of magnitude, N being the number of basis functions. 
If the function p(x)  and an eigenvalue A correlate in a way that the function U 
and it's derivatives are fairly small in the neighborhood of the points A and B, 
the expansion of U in the terms of the trigonometric basis converges with 
approximately the same rate as the expansion in the terms of algebraic poly- 
nomials, since the function under consideration can be treated as periodic with 
the period B - A .  The estimate of the convergence can be obtained through 
integration by parts of the rule for Fourier coefficients. In practice, calculations 
with trigonometric basis are more convenient than with polynomials. Smallness 
of the functions and their derivatives can be easily ensured by means of quasi- 
classical formulas. The same formulas stand for the choice of new points A', B' 
when A and B are infinite. It's noteworthy that the one-dimensional problem 
requires from 20 up to 80 of the basis functions, while 1400 of them must be 
involved in the solution of the two-dimensional problem. Meanwhile in view of 
their much slower convergence an application of routine finite-difference methods 
would require a significantly greater number of parameters to approximate the 
functions. 
Gridpoints and all Gaussian quadratures are conveniently calculated by a 
modified Harris method [15] which reduces the problem to diagonalizing the 
matrix of the product of an operator and an independent variable in an orthogonal 
polynomial basis. 
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3. A comparison of the accurate solution of the two-dimensional vibrational 
problem and the approximate solution obtained by the reaction coordinate 
method 

Consider the model Schroedinger equation (for simplicity written for m = 1): 

( d2+ x 2 1 d 2  ~f (y) )U=AU (9) 
- -~x 2 a ( y ) - -~o . d y 2 

with the boundary conditions: 

U(0, y) = U(~ ,  y) = 0 

U(x, y) = U(x, y + 2~-). 

Here f(y) and a(y) are assumed to be 2zr-periodic functions, the reaction path 
is directed along the y-axis. Eq. (9) gives an approximate description of the 
motion in a narrow deep valley. To analyse its solutions we introduce the following 
set of functions defining the vibrations along the x-axis, i.e. perpendicular to the 
reaction coordinate: 

Qi(x, y) = NiH~(.~(y) . x) exp {-  ax/-a~(y) �9 x2/2} 

where N~ are the normalization coefficients, Q~(x, y) being the eigenfunctions of 
the problem: 

(-~x2+ a(y)x 2) Qn(x, y)=e.O~(x, y) 

e. = a~/-a-~(y) �9 (2n+ 1). 

The function U can be expanded as: 

U(x, y) = E  r y) (10) 
i 

Upon substituting (10), (9) becomes: 

1 d 2 
( x2 dy2bf(y)+e~-h~)~pi 

= Ai,-2 ~Pi-4--t- Ai,-1 ~P~-2 + A~,oq~ + Ai,1 ~i+2 -~- Ai,2~i+4. 

The coefficients A are expressed through a'(y)/a(y) and a"(y)/a(y) ratios. 
Clearly, in a particular case of a(y) being a constant, the latter equation can be 
split. 

Suppose that the coefficients A are sufficiently small to solve the problem by 
means of the perturbation technique. The most interesting case is that of the 
ground state of the transverse vibrational mode. Zeroth-order eigenvalues )t~ and 
eigenfunctions ~0~ are given by the equation: 

1 d 2 
+ ax/-d~(y)~ q~,(y) = h,~o,(y). (-x---~o.dy 2 t-f (y) / 
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This equation occurs within the reaction coordinate approach. Representation 
of a as f t .  ao(y) enables us to estimate the fall-off rate of functions ~ which 
appears to be 1/~/-~ for large/3. Hence, for narrow valleys where the variation 
of curvature is much smaller than its value, the reaction coordinate method might 
be expected to be fairly accurate. However, its applicability limits can be tested 
only in numerical calculations. 

4. A comparison of the one- and two-dimensional problems 

The potential energy profile for hydrogen bond (h.b.) in MDA along the reaction 
coordinate was taken from the ab initio MO-LCAO-SCF calculations [17]. An 
approximation to this potential function was sought as a polynomial of degree 
8 (the separation between the potential minima was taken to be 0.65 A in 
accordance with the microwave experiment on MDA [18]): 

G( x ) = L( ao + a2 X2 + a4 x4 + a6 x6 + a8 X8 ) ( 11 ) 

with the empirical parameter L estimated from the condition of equality of tunnel 
splittings obtained by the model double-well calculations and their experimental 
values for the ground state of O--H bond stretching vibration in MDA assigned 
to the tunnelling of H or D. This condition is satisfied for the barrier height G(0) 
equal to 51 kJ/mol in a good agreement with the estimates obtained by the ab 
initio SCF calculations [8, 17, 19]. The calculated tunnel splittings for the barrier 
height were AEo(H)= 22.1 c m  -1, AEo(D)= 0.95 c m  -1. It's noteworthy that the 
energies of the transition from the ground vibrational state to the lower sublevel 
of the first excited state as 2420 c m  -1 for H and 2190 cm -x for D, in a satisfactory 
agreement with the experiment [20]. 

As was found for MDA [4] the frequencies of only two of the transverse in-plane 
modes undergo a significant change if the motion along the reaction coordinate 
is taken into consideration. One of them, the O--H bond in-plane bending mode 

Table 1. The vibrational frequencies for acetylacetone (A) and dimeric 
formic acid (B) pertaining to COH, COD fragments 

Frequencies, cm -t  

Mode A [20] B [21] 

P(OH)stretching 2750 
/~'(OH)bending in-plane 1460a, 1400b 
/"(OH)bending out-of-plane 957 
p(On)stretching 2020 
v(OD)b.i..p. 1076 a, 1080 b 
v(OD)b ...... -p. 707 
v(O-H-. "O)b.i.-p. 
v(O-D--"O)b,i.-p. 

2688 
1415 
917 

2068 
1250 

a From [22] 
b From [23] 

678 
137.1 
130.0 
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was treated within the two-dimensional model. The plots for the normal and 
dideuterated forms of MDA were assumed to be closely similar. 

Vibrational frequencies at the minimum of the potential function and in the 
transition state were taken from the vibrational spectra of the close analogue of 
MDA, acetylacetone, and the dimer of formic acid. We can use the Raman 
frequencies for the latter because the vibrational frequencies pertaining to COH 
(COD) fragments are virtually close to those for acetylacetone (see Table 1). 
Thus, the frequencies of the in-plane bending mode of the O-H (O-D) bond at 
the potential function minima were taken to be 1400 cm -~ and 1080 cm -~, respec- 
tively, meanwhile in the transition state these values were taken to be 137 cm -1 
and 130 cm-1; the latter estimates are based on the Raman spectra of the dimeric 
formic acid [21]. 

Thus, the model two-dimensional potential functions of h.b. in MDA were chosen 
as~ 

a(x ,  y) = G(x)  + . y2 (12a) 

m Vo .y2 (12b) G(x, y) = G(x)  + --ff 

where 

~1400 cm -a (for hydrogen) 
Vo = [ 1080 cm -~ (for deuterium). 

The plots of the potential surfaces (12a) and (12b) are represented in Figs. la, b. 

A series of computations performed with potential energy function (12a) demon- 
strated that the tunnel splitting for the ground vibrational state approximated 
the experimental values for the barrier height G(0, 0) equal to 57 kJ/mol and 
amounted to: 21Eoo(H)=21.4 cm -~ and AEoo(D)=0.79 cm -~, the energy being 
quantized along the reaction coordinate (first number) and the transverse vibration 
(second number). 

Several words should be said about the details of the computations. Total 800 
functions of trigonometric basis were obtained as products of 40 functions 
representing the motion along the reaction coordinate and 20 functions-perpen- 
dicular to it. An average number of iterations per eigenvalue to be required for 
convergence was 10-12: the convergence criterium being 10 -6 cm -~. 

In order to evaluate the changes introduced by the transverse mode v(x) we 
solved the problems on H and D states in the one-dimensional potential function 
(11) with G(0) = 57 kJ/mol, and in the two-dimensional models (12a) and (12b) 
with the same height of G(0, 0). The energy levels of H and D states and the 
tunnel splittings in the three model potential functions introduced above are 
sketched in Figs. 2 and 3. 

Solving the problems with (12a) yields markedly enlarged values of the tunnel 
splitting and the reduced separation between those levels that correlated with 
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Fig. 1. The plots of  model two- 
dimensional potential functions with 
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one and the same vibrational state along the reaction coordinate. The tunnel 
splitting values obtained by the exact solution of the two-dimensional vibrational 
problem with the potential function (12a) are compared with those obtained by 
the reaction coordinate method (consult Table 2). The dependence of the in-plane 

Fig. 2. Energy levels for the states of H (in parentheses the 
tunnel splittings are given) in the one-dimensional potential 
the (11) and in the two-dimensional potentials (12b), (12a) 
with barrier height 4760 cm -~ (57 kJ/mol) 
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Fig. 3. Energy levels for the states of D (in parentheses the 
tunnel splittings are given) in the one-dimensional potential 
the (11) and in the two-dimensional potentials (12b), (12a) 
with barrier height 4760 cm -t  (57 kJ/mol) 

Table 2. Comparison of tunnel splittings obtained by the straightforward solution of 
two-dimensional vibrational problem with the potential function (12a) (A) with those 
obtained by the reaction coordinate method (B). The notations of energy levels are 
introduced in Fig. 2.3. Barrier height 57 kJ/mol 

Tunnel splittings, cm -1 

Z Method A Method B 

(B)-(A) 
(A) 

- - .  100% 

AE00(H) 21.4 24.2 12.9 
AE01(H ) 38.8 57.1 47.3 
AE00(D ) 0.79 0.95 17.9 
AEIo(D ) 107.5 115.9 7.9 
AE01(D) 1.54 2.60 68.8 
AEo2(D) 9.53 8.09 -14.9 
AEo0(T) a 0.065 0.068 4.6 
AE10(T ) 13.0 15.1 16.2 
AE01(T ) 0.177 0.181 2.3 
AEo2(T) 3.23 0.53 -83.6 
AEoa(T) 33.4 32.5 -2.7 

a In the case of tritium the following values were taken for the frequencies of the 
transverse mode: 850 cm -1 at the minimum of the potential curve, 127 cm -1 in the 
transition state 

bending mode frequency on the reaction coordinate results in vibrational non- 
adiabaticity that is supposed to account for the discrepancies between the sol- 
utions. This effect becomes very significant once an excitation of the vibrations 
perpendicular to the reaction coordinate is concerned. 

5. Conclusive remarks 

The exact solution of the two-dimensional problem made it possible to define 
the role of vibrational-nonadiabatic effects. Here we treated only those effects 
arising from the dependence between the frequencies of transverse modes and 
the reaction coordinate. We have demonstrated that the magnitudes of the 
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v i b r a t i o n a l - n o n a d i a b a t i c  correct ions ,  are,  in general ,  the  most  s ignif icant  ones 
for  the  exc i ted  levels. 

The in -p l ane  bend ing  m o d e  o f  O - H  b o n d  in M D A  as well  as the  O . . . O  m o d e  
(skele ta l  de fo rma t ion )  were shown [4] to be  coup led  s t rongly  to the  reac t ion  
coord ina te .  Thus,  the " s y s t e m "  o f  the  M D A  molecu le  necessar i ly  inc ludes  three  
degrees  o f  f reedom.  However ,  cons ide rab le  difficulties which  one must  overcome 
whi le  accura te ly  solving the th ree -d imens iona l  p r o b l e m  el ic i ted a deep  interes t  
in es t imat ing  the errors ar is ing f rom the neglect  o f  one o f  s t rongly  c oup l e d  modes .  

The large magn i tude  o f  the f requency  o f  the  t ransverse  m o d e  at  the po ten t ia l  
energy m i n i m u m  enables  one to cons ider  on ly  those  energy levels tha t  co r r e spond  
to the g r o u n d  state o f  the t ransverse  v ib ra t ion  ( t h roughou t  the p a p e r  de no t e d  as 

EKo). As fol lows f rom the results  of  the p resen t  work,  the reac t ion  coord ina t e  
me thod  gives fa i r ly  accura te  values  of  the tunne l ing  probab i l i t i e s  not  only  for  
E0o level,  but  also for  the  exci ted  level Elo (re la t ive difference not  exceed ing  
20%).  Na tu ra l ly ,  thei r  eva lua t ion  by  the reac t ion  coord ina t e  m e t h o d  is by  far 
less difficult than  the exact  so lu t ion  o f  the  two-d imens iona l  p rob lem.  Therefore ,  
our  results  p rov ide  a bas is  for  the exclus ion  o f  the O - H  bend ing  m o d e  f rom the 

" s y s t e m "  in ca lcula t ing  the  tunnel ing  probabi l i t i es .  

A c o m p a r i s o n  o f  the one-  and  two-d imens iona l  p rob l ems  has shown that  in cases 
when o ther  than  EKo levels can be ignored ,  the  one -d imens iona l  a p p r o x i m a t i o n  
can be successfu l ly  used  for  es t imat ing tunne l ing  p robab i l i t i e s  and  ba r r i e r  heights.  
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